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Fungal β-Glucans: Biological Properties, 
Immunomodulatory Effects, Diagnostic 
and Therapeutic Applications

ABSTRACT 
Research from the past to the present has shown that natural ingredients in the human 
daily diet play a crucial role in preventing various diseases. One well-known compound is 
β-glucan, a natural polysaccharide found in the cell walls of many fungi, yeasts, and some 
microorganisms, as well as in plants such as barley and wheat. β-glucans are widely rec-
ognized for their ability to lower cholesterol and blood glucose levels, thereby reducing 
the risk of cardiovascular disease and diabetes. In addition to their effects on lipid levels 
and glucose metabolism, these molecules exhibit antioxidant properties by eliminating re-
active oxygen species. As a result, they help lower the risk of conditions such as athero-
sclerosis, cardiovascular disease, neurological disorders, diabetes, and cancer. Furthermore, 
β-glucans have been reported to possess immune-boosting and antitumor effects. By bind-
ing to specific receptors on the surface of immune cells, they stimulate immune activity. 
Additionally, β-glucans belong to a group of probiotics that promote the growth and activity 
of beneficial gut microbiota, preventing the proliferation of harmful pathogens. They play a 
vital role in maintaining gastrointestinal health, reducing inflammation, and lowering the 
risk of colon cancer. Further research on the health benefits of β-glucans may be key to im-
proving overall well-being and preventing many chronic non-communicable diseases such 
as diabetes, high cholesterol, obesity, cardiovascular disease, and cancer.
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INTRODUCTION

β-glucans area part of the fungal cell wall 
structure, mainly considered a potential 
therapeutic and diagnostic tool for inva-
sive fungal infections (IFIs) (1). Several  

studies have been conducted about their 
effects on health (1). They have been reported to 
reduce blood glucose and have a strong inhibitory 
effect on lipid peroxidation as a regulator of blood 
cholesterol (2-4). In addition, these molecules’ ef-
fects in regulating the immune system and their 
antimicrobial, anticancer, anti-inflammatory and 
antiallergic properties have been proven (5, 6). Also, 
synergistic effects of β-glucans as antioxidant, an-
tigenotoxic and antimutagenic activities have been 
reported by scientists (6, 7). In this study, the main 
characteristics, therapeutic options and diagnostic 
potentials of β-glucans were reviewed.

Methods data sources and search strategy
Databases such as PubMed, Google Scholar, Scopus, 
EBSCO, E-Journals, and ScienceDirect were searched 
using keywords such as (“Beta-glucan” OR “Fungal 
Beta-glucan” OR “Beta-glucan AND Diagnosis” OR 
“Beta-glucan AND Therapy”). The search covered lit-
erature published between December 30, 1990, and 
December 1, 2024. A total of 23,600 results were re-
trieved, including conference presentations, letters 
to the editor, short communications, journal articles, 
books, reviews, and case reports. After reviewing the 
titles and abstracts, 250 full-text articles were iden-
tified as relevant. Studies focusing on the effects of 
fungal β-glucans on the body, their anticancer prop-

erties, and their applications in diagnosis, treatment, 
and vaccine development were included. Ultimately, 
100 articles were selected for analysis to provide evi-
dence supporting the biological properties, immuno-
modulatory effects, and diagnostic and therapeutic 
applications of fungal β-glucans.

Chemical structure and sources of β-glucans
β-Glucans are polysaccharides made of D-glucose 
monosaccharides linked by β-glycosidic bonds. 
Based on the origin of β-glucans, they differ in 
terms of solubility, degree of branching, mass, and 
molecular shape, affecting their biological activity. 
In general, β-glucans are divided into two isomers 
(1, 3: 1,4)-β-glucans based on glycosidic linkages. 
β-glucans in the cell wall of fungi are composed 
of β-D-glucopyranose molecules that are linked 
by β-1,3- and β-1,6-glycoside bonds and form a 
branched structure (Figure 1A) (6). On the other 
hand, β-glucans in cereals are in the form of un-
branched chains consisting of β-D-glucopyranose 
monomers connected by β-1,3-and β-1,4-glycosid-
ic bonds (Figure 1B) (7). These polysaccharides are 
present in the cell walls of some microorganisms, 
including fungi, bacteria, barley, wheat, some vege-
tables and fruits, lichens, and algae (2, 7).

The role of β-glucans in health
The health-promoting properties of β-glucans have 
been reported in various studies (3-5). Nowadays, it 
is known that zymosan obtained from the cell wall 
of yeasts stimulates the innate immune response 
due to its high concentration of β-glucan (6). It has 
been proven that a diet rich in β-glucans has a pos-

Figure 1. A. The polymer of β (1-3)-D-glycopyranosyl units with branching at β (1-6) and β (1-4)-D-glycopyranosyl units (6),  
B. The polymer of β (1-3)-D-glycopyranosyl units with branching at β (1-6) and β (1-4) -glycoside bonds (3).
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itive effect on human health by preventing chronic 
diseases such as diabetes, high blood cholesterol, 
obesity, cardiovascular disease, and cancer. β-glu-
cans have effects for lowering cholesterol and 
blood glucose, a major factor in the prevention of 
obesity and metabolic disorders, as well as having 
antioxidant, immunomodulatory, and antitumor 
properties (7-9). Furthermore, β-glucans have a pre-
biotic effect that stimulates the growth and activity 
of intestinal normal flora bacteria (9, 10).

The effect of β-glucans on the innate and 
acquired immune system
β-glucan can modulate and stimulate the immune 
system (11,12). This polysaccharide leads to stim-
ulation and activation of innate immune respons-
es by binding to Dectin-1, complement receptor 3 
(CR3), and Toll-like receptor 2 (TLR-2) on the sur-
face of dendritic cells, neutrophils, eosinophils, 
monocytes, and macrophages. The binding of the 
Dectin-1 receptor to β-glucan leads to the activa-
tion of spleen tyrosine kinase (Syk) and nuclear 
factor kappa B (NF-κβ), which is followed by the 
production and secretion of pro-inflammatory cy-
tokines (e.g. IL-1, IL-6, and TNF-α) and the expres-
sion of adhesion molecules (6,11). On the other 
hand, the binding of this polysaccharide to the CR3 
receptor leads to the activation of the transcription 
factor NF-kβ, which is followed by the production 

of monocyte chemoattractant protein-1 (MCP-1) 
and TNF-α (Figure 2) (13). Moreover, it increases the 
number of lysosomes in macrophages and natural 
killer (NK) cells) (14). As mentioned, β-glucans can 
modulate innate and adaptive immunity (2). They 
are recognized by macrophages. These cells convert 
β-glucans into smaller fragments and release them 
outside the macrophage. β-fragments are taken up 
by granulocytes, monocytes, NK cells, and dendritic 
cells through CR3, followed by an immune response 
(24). Today, it is known thatβ-glucans are zwitter-
ionic polysaccharides, meaning they carry both 
positive and negative charges. This unique proper-
ty enables them to interact with immune cells ef-
fectively. When β-glucans are recognized by mac-
rophages, they undergo enzymatic processing and 
are fragmented into smaller bioactive components. 
These fragments are then released from macro-
phages and can be taken up by various immune 
cells, including granulocytes, monocytes, NK cells, 
and dendritic cells, primarily through the CR3. In 
addition, β-glucans are known to activate CD4+ T 
cells through the major histocompatibility complex 
class II (MHC-II) intracellular pathway. This acti-
vation involves the binding of β-glucans to MHC-II 
molecules within antigen-presenting cells (APCs), 
facilitating the presentation of antigens to helper 
T cells. Furthermore, β-glucans may influence the 
production and metabolism of nitric oxide (NO) in 

Figure 2. The effect of β-glucans on the immune responses.
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immune cells, promoting an enhanced immune 
response. Specifically, NO, which is produced in 
response to β-glucan stimulation, can be convert-
ed into low-molecular-weight carbohydrates that 
further modulate the immune response (22, 24). 
Macrophages participate in wound healing through 
the secretion of various factors and cytokines, in-
cluding TNF-α. Interestingly, β-glucan accelerates 
wound healing by inducing the expression of TNF-α 
in wound-resident macrophages (15).

B lymphocytes activated with β-glucan release IL-
8, which induces neutrophil recruitment even in 
the absence of T cells. β-glucan stimulates B cells 
to produce IgG immunoglobulin (16). Many stud-
ies point to the role of β-glucans isolated from the 
yeast cell wall of Saccharomyces cerevisiae and Pneu-
mocystis carinii because of its ability to stimulate im-
mune cells (10).

Antitumor activity of β-glucans
The antitumor effect of β-glucans is associated 
with their ability to activate the complement sys-
tem. They inhibit the proliferation of cancer cells 
by inhibiting tyrosine kinases, as well as inhibiting 
the growth of blood vessels around the tumor and 
inducing death through apoptosis (8, 17). β-glucans 

can modulate NF-κβ transcription factor activity; 
over activity of NF-κβ has been observed in many 
cancers, which causes proliferation, antiapoptotic 
activity, promotes angiogenesis and metastasizes 
(8, 18). There is a report that oral Β-glucan increased 
the expression of IFN-γ and the activity of NK cells, 
which led to a significant reduction in tumor inci-
dence and the prevention of liver metastasis (19, 20).

Other mechanisms include active CR3 located on 
specific NK cells, neutrophils, monocytes, and lym-
phocytes. This pathway identifies opsonic β-glucans, 
which lead to phagocytosis and lysis cells. β-glucans 
bind to the CR3 lectin domain, binding to inactive 
3b (iC3b) complement on the surface of cancer cells. 
Neutrophils containing CR3 can stimulate the lysis 
of iC3b-coated tumor cells (21). Similarly, most hu-
man NK cells express CR3, and it has been shown 
that the opsonization of iC3b-coated NK cells leads 
to increased target lysis (Figure 3) (22).

Improving the intestinal environment and 
antimicrobial effects
β-glucans can repair damage to the intestinal mu-
cosa caused by pathogenic bacteria and maintain 
the integrity of the intestinal mucosal membrane 
by increasing neurotransmitters, including acetyl-

Figure 3. The role of β-glucans on tumor cells. β-glucan can bind to iC3b on surface tumor cells. Immune cells, including neutrophils 

and NK cells, can bind to β-glucans attached to iC3b through CR3, which leads to their activation. As a result, it leads to the lysis and 
destruction of tumor cells (21, 22).
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Target 
Pathogen

Adjuvant/carrier/ 
vehicle Vaccine type Model Route of injection Underlying immune mechanism Ref.

Hepatitis B Alum adjuvant Hybrid Adjuvant Mice Injection in groin Whole glucan particles as a vaccine 
against systemic coccidioidomycosis (45)

Avian 
paramyxovirus 
type-1

Sulfated glucan Monovalent live 
virus vaccine

Chickens  
(male) Orally Antibodies, IL-2, IFN-γ, promote 

lymphocyte proliferation (38)

Coccidioides 
posadasii

Whole glucan 
particles conjugation 
with BSA

- Mice Subcutaneously Low-mortality (51)

Aspergillus 
fumigatus

Whole glucan 
particles conjugation 
with BSA

- Mice Subcutaneously Innate and acquired immune (52)

Mycobacterium 
tuberculosis - - Mice Intraperitoneally

Trained immunity via histone 
modifications at gene promoters in 
human monocytes, IL-1

(41)

Leishmania 
braziliensis Whole glucan -

Peripheral 
human Blood 
Mononuclear 
Cells

-
Trained immunity, highlighting IL-1 
signaling and IL-32γ (42)

Hepatitis B
β-glucan or 
particulate (GPs) 
form of β-glucan

DNA vaccine Mice Subcutaneous APCs recruitment and activation (46)

Vibrio harveyi

V. harveyi ZJ0603 
vaccine (FKC) 
combined with 
β-glucan

- Fish Intraperitoneal (↑) IgM; (↑) MHC-Iα; (↑) TNF-α; (↑) 
IL-1β; (↑) IL-16. (43)

Cyprinid 
herpesvirus 2 - Inactivated vaccine Fish Orally ↑Expression of:  IFN-γ, IL-2, IgM and 

mucosal immunity (44)

Rabies - Inactivated vaccine Dog Subcutaneous Innate and adaptive immune (39)

Hepatitis B 
surface antigen 
(HBsAg)

- - Mice Intraperitoneally Increase of T and B cell activation (40)

Bordetella -

Bivalent vaccine: 
Inactivated 
bacteria and DNA 
vaccine

Dog Subcutaneously 
/ orally IgA ↓, IgM↑ (94)

Hepatitis B - DNA Mice Intraperitoneally
Recruitment and maturation of 
dendritic cells, Virus-specific CTL, 
antibody and Th1 cell responses

(95)

Influenza 
vaccine (H5N1) Sulfated glucan Inactivated vaccine Mice Subcutaneous Enhance lymphocyte proliferation, ↑ 

CD4+ T (56)

Table 1. A brief review of role yeast β-glucans in infectious disease vaccines.

↑: Increase, ↓: Decrease, IL-1: Interleukin-1, IL-2: Interleukin-2, IL-32γ: Interleukin-32γ, IL-16: Interleukin-16, IFN-γ: Interferon-gamma, TNF-α: Tumor Necrosis Factor-Alpha, 
MHC-Iα: Major Histocompatibility Complex Class I α, APCs: Antigen‐Presenting Cells, IgM: Immunoglobulin M, IgA: Immunoglobulin A. CTL: Cytotoxic T lymphocyte,  
Th1: T helper 1.
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cholinesterase, substance P, and serotonin, in the 
intestinal epithelium (23). In addition, β-glucans 
have various antibacterial effects, including dam-
age to the membrane and cell wall of bacteria, pen-
etration into the bacterial cell, disruption of cell 
metabolism, and increased permeability of the bac-
terial cell membrane (24). These polysaccharides 
can increase the transport capacity of the gastroin-
testinal tract by promoting peristalsis (25).

Various studies have been performed to prove the 
bacteriostatic and fungistatic effects. It has been 
found that β-glucans might have an inhibitory 
effect on the pathogenic Escherichia coli in the pig 
intestine (26). Furthermore, β-glucans have been 
effective in mice suffering from gastrointestinal 
infections with Candida species and methicillin-re-
sistant Staphylococcus aureus and have increased the 
lifetime of mice (27).

Antioxidant properties of β-glucan
Under the influence of environmental conditions, 
the body’s oxidation and antioxidation systems 
become out of balance. β-glucans can increase the 
antioxidant capacity of the body by improving the 
activity of antioxidant enzymes such as superoxide 
dismutase, catalase, and glutathione peroxidase. In 
addition, by reducing the activity of hydroxyl radi-
cals and superoxide anion, they increase the effect 
of lipid peroxidation (28). The combination of β-glu-
can hydroxyl groups and metal ions prevents the 
production of hydroxyl radicals and lipid peroxida-
tion products (12, 28).

The effect of β-glucan on upper respiratory tract 
infections
Studies have shown that β-glucan consumption re-
duces the severity of the physical symptoms of up-
per respiratory tract infections (URTIs) (29, 30). The 
antiviral effects of β-glucan might occur through 
the expression of interferon-stimulated genes 
(ISGs) in macrophage. Therefore, it can be said that 
β-glucan effectively promotes the expression of 
ISGs by inducing IFN-γ and increasing signal trans-
ducer and activator of transcription 1(STAT1)-me-
diated transcriptional activity (31).

With the outbreak of COVID-19, extensive research 
has been conducted on various prevention and 

therapy options, and β-glucan has been one of the 
compounds of interest (32). Some studies show 
that β-glucan administration can help reduce the 
severity of the disease (32). Research and study on 
the exact mechanism of the immune response to 
SARS-CoV-2 will certainly be of great help in the 
treatment and prevention of this disease (33). The 
need for innate immune responses in COVID-19 to 
establish a successful immune response has been 
proven, and severe inflammation occurs when this 
response becomes problematic (33). In a study, the 
consumption of β-glucan supplements produced 
by the yeast Aureobasidium pullulans has helped to 
maintain the main biomarkers of IL-6, D-dimer 
and neutrophil-to-lymphocyte ratio (NLR) in reduc-
ing the clinical severity and mortality caused by 
COVID-19 compared to patients without β-glucan 
treatment (34, 35). 

The metabolic effects of yeast β-glucans in reg-
ulating blood glucose and lipid levels add to the 
benefits of their use in COVID-19 because fasting 
blood glucose directly impacts the disease severity 
and mortality rate of COVID-19 (36, 37). Also, fun-
gal β-glucans can be used as a prophylactic sup-
plement to help fight the coagulopathy associated 
with COVID-19 (38).

Therefore, according to the ability of β-glucan to 
help recover from COVID-19, it seems that after 
further study in this field, it can be used as a sup-
plement in the treatment of many respiratory and 
infectious diseases, especially in the treatment of 
COVID-19 (34).

The role of β-glucans in vaccine development
In the early 1990s, research was conducted on the 
effects of β-glucans and their use as adjuvants in 
vaccines. β-glucan with Bacillus Calmette-Guérin 
(BCG)-like function induces the tripartite mo-
tif  family (TRIM) phenotype, which is involved in 
pathogen recognition and transcriptional regula-
tion of the innate immune system. β-glucan can 
produce long-term TRIM against a wide range of 
pathogens (39, 40).

In addition, β-glucans show additive and even syn-
ergistic effects with various factors (41). For this 
reason, many studies have focused on the use of 
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β-glucans in viral, bacterial, and parasitic vaccines 
(42-45), including hepatitis B, Toxoplasma gondii,  S. 
aureus, and some fungal agents such as Candida 
species and Cryptococcus neoformans (46-51). In one 
experiment, whole β-glucan particles were used 
as part of a vaccine against systemic aspergillosis 
and coccidioidomycosis. The results showed that 
the whole β-glucan particles could be used as a ba-
sis for making a fungal vaccine (51-53). In another 
study, mice vaccinated with recombinant crypto-
coccal proteins in β-glucan particles were protected 
against cryptococci (54).

Oral vaccines use a variety of particle antigen de-
livery systems, such as immune-stimulating com-
plexes, liposomes, microparticles, nanoparticles, 
virus-like particles, and β-glucans (55). Because of 
β-glucans size and structural similarity to natural 
pathogens, it increases the immune response to 
vaccination. On the other hand, using natural poly-
mers to prepare antigen delivery systems in new 
vaccines is very important today. Meanwhile, β-glu-
cans in the form of fine particles can not only act 
as immune stimulants but also as antigen carriers 
(Table1) (56, 57).

Since the onset of the COVID-19 pandemic, vari-
ous studies have been conducted on ways to treat 
and prevent the disease. Considering the func-
tion of β-glucans in the immune system and their 
role in the production of vaccines against infec-
tious diseases, they can be beneficial as adjuncts 
and improve the effectiveness of various vaccines 
against COVID-19. On the other hand, the vaccine 
effectiveness against COVID-19 decreases over time 
after vaccination (from 88% in the first month to 
47% after five months), and it seems this decrease 
in immunity is because of reduced vaccine efficacy. 
Therefore, the use of appropriate adjuvants such 
as β-glucans, due to their important role in the im-
mune system, can increase the effectiveness of vac-
cines. In COVID-19, since we see a severe inflamma-
tory response and its complications in patients, the 
use of β-glucans is very suitable and efficient due 
to the regulation of the immune system and can 
even be used in the treatment of the disease (58). 
It should be noted that the existing studies related 
to the use of β-glucan particles in vaccines are still 
preliminary, and more extensive clinical trials are 

needed to establish the effectiveness of its use in 
vaccines.

β-glucans are a new tool in fungal diagnosis
Since IFI is one of the most important causes of 
morbidity and mortality in immunocompromised 
individuals and malignant patients, rapid diagno-
sis of infection and early initiation of antifungal 
therapy in these patients are of great importance 
(59-62). Conventional methods such as culture and 
histopathology are considered the gold standard 
for the diagnosis of IFI (63). However, these meth-
ods are invasive, time-consuming, and may be as-
sociated with false-negative results (64). Therefore, 
introducing new methods in the diagnosis of IFIs 
is of great importance. One of the methods for 
the early diagnosis of fungal diseases is the iden-
tification of markers of fungal infection, such as 
fungal nucleic acids, antigens, antibodies, or cell 
wall components (56, 64-67). Measurement of bio-
logical markers, such as the fungal cell wall com-
ponent (1→3)-β-D-glucan (BDG), offers a non-inva-
sive method for the diagnosis of IFIs (68, 69). BDG 
is present in almost all pathogenic fungal species, 
especially Aspergillus. Therefore, as a biomarker for 
the diagnosis of fungal infections, especially in cer-
tain patients at risk of IFIs, such as patients with 
hematological malignancies and organ transplant 
recipients, who are particularly at risk, measure-
ment of β-glucan levels can help in the diagnosis 
and management of these infections, according to 
the European Society for Clinical Microbiology and 
Infectious Diseases (ESCMID), the European Con-
federation of Medical Mycology (ECMM) and the 
European Respiratory Society (ERS) 2017 guideline. 
According to the ESCMID-ECMM-ERS 2017 guide-
line, the sensitivity and specificity of β-glucan as-
says in the diagnosis of fungal infections, especially 
aspergillosis, strongly depend on the patient and 
their clinical conditions. Based on available data on 
different patients, including intensive care unit pa-
tients, cancer patients, patients with hematological 
malignancies, organ transplants, HIV, and, during 
the COVID pandemic, patients with COVID-19-asso-
ciated pulmonary aspergillosis (CAPA), the overall 
sensitivity and specificity of β-glucan assays range 
from 77% to 99%. These results suggest that β-glu-
can may be useful in the diagnosis of fungal infec-
tions in these patients; however, sometimes further 
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confirmation using other tests such as galactoman-
nan (GM) is needed to increase the accuracy of the 
diagnosis (65-67, 70-74). 

Also, according to the ESCMID-ECMM-ERS 2017 
guideline, β-glucan is usually positive in invasive 
fusariosis and can be useful in the diagnosis (69). It 
is worth noting that in the case of candidemia, the 
detection of BDG in Candida spp. has been approved 
by the U.S. Food and Drug Administration (FDA) as 
an important biomarker with a sensitivity of 92% 
and specificity of 81% for the diagnosis of IFIs (70). 
The measurement of BDG, especially in HIV-infect-
ed patients, has been investigated in many studies 
because of the high risk of these individuals devel-
oping fungal infections, especially pneumocystis. 
BDG measurement has been reported to be 100% 
sensitive and 96.4% specific for Pneumocystis pneu-
monia (PCP) (75, 76). However, according to the ES-
CMID-ECMM-ERS guidelines, the use of BDG in the 
diagnosis of Mucorales and some Basidiomycetous 
yeasts, such as Cryptococcus spp., or Trichosporon 

spp., requires further investigation and marginally 
supports a recommendation for use (77, 78). How-
ever, the evaluation and measurement of β-glucan 
for the diagnosis of IFIs seems reasonable because, 
in various studies, the presence of BDG in the blood 
of patients in the early stages of the disease has 
been proven (61, 66, 73).

Concentrations of less than 1 pg/mL of BDG can 
be measured spectrophotometrically by activating 
factor G (horseshoe crab coagulation factor). BDG 
binds to the factor G subunit and activates its ser-
ine protease zymogen b subunit. The now activated 
factor G activates the procoagulant enzyme of the 
coagulation cascade (Limulus polyphemus or Tachy-
pleus tridentatus), which in turn cleaves the chromo-
genic substrate Boc-Leu-Gly-Arg-P-Nitroanilide and 
forms a chromophore that absorbs at 450°C (Figure 
4) (46, 79).

Various commercial kits, including Fungitell/
Fungitell STAT/Glucatell (Cape Cod Associates, 

Figure 4. Basis of the β-glucan test for the diagnosis of invasive fungal infections.
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Falmouth, MA, USA), Wako/Wako-EU (Wako Pure 
Chemical Industries, Osaka, Japan), Fungitec G 
test ES/Fungitec G test MKII (Seikagaku Kogyo Co.,  
Tokyo, Japan, affiliated with Cape Cod, Falmouth, 
MA, USA), and Dynamiker Fungus (Dynamiker Bio-
technology Ltd., Tianjin, China), have been intro-
duced in the past for the measurement of BDG in 
serum (80). In some studies, BDG has been inves-
tigated in urine and bronchoalveolar lavage (BAL) 
(79, 81, 82). One important advantage of measuring 
BDG in blood is that it can be detected at an early 
stage of infection, when the amount of fungal DNA 
may be very low in the early stages (75, 83, 84). 

It must be considered the fact that the limitation of 
the BDG assay is the false-positive results. Things 
that can cause false positives include hemodialy-
sis, receiving blood products such as albumin and 
immunoglobulins, exposure to gases contaminat-
ed with glucan and surgical sponges during surgi-
cal procedures, and patients who receive gamma 
globulin reagents intravenously. Nevertheless, the 
possibility of false positives is very low because of-
ten glucan-free equipment is available, and mod-
ern dialysis membranes manufactured from blood 
cells usually do not release BDG (55, 58). Therefore, 
by using experienced personnel and compliance 
with specific conditions, BDG can be a beneficial 
diagnostic tool in IFI, especially due to its repro-
ducibility and short test time (79). Despite the ad-
vantages of using BDG in the diagnosis of IFIs, its 
measurement has not been confirmed as a routine 

diagnostic method for these infections (Table 2) (75, 
76, 85-93). Overall, β-glucan measurement can be 
useful and practical as a suitable diagnostic aid due 
to the ease of sample collection, the short test time 
to determine the result, and the possibility of con-
secutive and repeated BDG assessments for at-risk 
patients.

CONCLUSION

Based on the study, fungal β-glucan can be con-
sidered a significant substance with numerous po-
tential benefits for improving human health. The 
effects of β-glucan on immune stimulation and 
regulation have been confirmed in both humans 
and animals. In recent years, promising findings 
have emerged regarding the use of β-glucan in tu-
mor treatment. Other beneficial effects include its 
impact on fat and sugar metabolism and its ability 
to lower blood cholesterol levels. Numerous studies 
have also been conducted on its use in diagnostics, 
treatment of infectious diseases, and vaccine pro-
duction. In addition to its potential use in medi-
cine, beta-glucan has wide applications in the food 
and chemical industries. One of the key sources 
of β-glucan is yeast beta-glucan. Given that yeast 
culture conditions are generally known, rapid and 
simple, the production of this substance could offer 
significant economic, commercial and biotechno-
logical benefits. However, further research and clin-
ical trials are still necessary.
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